

DOE Distributed Power & Industrial DG Quarterly Review Meeting

October 23, 2001

Increasing the Use of DG in the Semiconductor Industry

Subcontract # 400006029

Barry Cummings, SRP

Responsible persons

◆ Project Manager,

Barry Cummings SRP Phoenix Arizona

◆ Technical Project Manager,

Tom Rizy, Oak Ridge National Lab

Hypothesis

- ◆ Combining supplier & semiconductor FAB plant benefits significantly increases opportunities for D.G.
- ◆ Technical and economic changes in the next 5 to 10 years will provide new opportunities for D.G.

Objectives

- ◆ Create a management decision guideline
- Provide research tool for site-specific, feasibility studies
- ◆ Identify technical and economic improvements needed
- **◆** Estimate USA market
- Calculate total effects of increased number of DG's in Semi plants

- ◆ Fuel Cells
- ◆ Alternative energy sources requiring energy storage

Other participants

- # SEMATECH Walter Worth, Ram Mallela

Intel – Phil Sarikas, Michael Bick, Marty Sedler

Motorola - Phil Naughton

AMD - Dan Smith

Gant chart

1. Guidelines

Task leader: Tom LaRose

- Environmental, Legal, and Institutional Issues
- Review of Distributed Generation Technologies
- Matrix of DG Requirements and DG Technologies
- Application Guidelines

Task 1 Subtasks completed-Technical studies

- Probability risk assessment of redundant transmission line,
- ◆ Transient modeling of the CT for 1) load pick-up, 2) interruptions, 3) faults.
- ◆ Transient model CT effects on voltage sags
- Load flow program & loss model effect on network losses

Task 1 Subtask – 2001 and 2007 costs & performance

- ◆reciprocating engines
- ◆fuel cells
- photovoltaics

Calculated MTTF as a function of various supply scenarios

(base case = three 69kV sources, no DG)

Calculated losses as a function of various supply scenarios

(base case = three 69kV sources, no DG; service disruption = \$500K plus \$750K/hr)

2. Develop Design Concepts Task leader Bob Hess

- Size major equipment
- Heat balance flow diagrams
- General Arrangement drawings
- Single line electric diagrams
- Economic analysis including operating costs

Two alternatives: One GE LM 6000 or Two GE LM 2500

	CASE							
	2A	2B	3A	3B	4A	4B	5A	5B
1-GE LM 6000	X	X	Χ	Χ				
2-GE LM 2500					X	X	X	X
Cogeneration	X	X	X	X	X	X	X	X
Combined Cycle	X	X			X	X		
Simple Cycle	- 1		X	X			X	X
Steam Turbine Chillers	X		X		X		X	
Absorption Chillers		X		X		X		X

- Single line and flow diagrams
- Site arrangements
- Water consumption
- Estimates
- Performance Permitting requirements
- O&M and Capital cost estimates

Task 2 completions - External requirements

- ◆ Chemical accident prevention
- ◆ Zoning requirements building permits, local ordinances
- ◆ State Utility Commission Siting Requirements

3. Determine Potential Markets

Task Leader: Barry Cummings

Macro Effects of USA Market Penetration

Vordwide Fab Watch - July 2001 Issue: opyright: Strategic Marketing Associates

4. Identify Key Risk Factors Task Leader: Bob Hess

- Identify and evaluate key risk factors
- Recommend R&D to reduce risk and increase acceptance of distributed generation

Task 4 Sub task completions

- Contract with Comer & Associates "Audit" of risks, conclusions, methods
- ◆ Identification of key variables
- ◆ Draft of decision requirements
- ◆ Thermal characteristics and related costs

Task 4 completions - External risks

- ◆ Cultural, historic, and endangered species issues
- ◆ Public and government relations
- ◆ Regulatory and legislative developments

Schedule Challenges

- Creating drafts manpower and format
- ◆ Concensus agreement on conclusions
- ◆ Scope of Task 3, Market
- ◆ Economic comparison assumptions

Social economics

Customer economics

Supplier economics

Nature of semiconductor fab business

Gant chart

